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List of Definitions 

Term Definition 

CLI Command line interface 

Continuous 

Integration  
Automated process of running tests on every commit to the repository 

Demo Short for demonstration; this is one of the deliverables of the project: a 

demonstration of the quad’s capabilities, for example, doing a backflip 

with the quad, finding an object and following it, communicating with a 

second quad to perform flight patterns 

FPGA Field Programmable Gate Array; this is a board that can be programmed 

to simulate electrical hardware components. Used often in 

reconfigurable computing 
Ground Station The application that runs on a host computer that communicates with 

the quad via a Wi-Fi connection and sends it coordinates to the quad 

GUI Graphical user interface 

IR Infrared wavelengths of light longer than visible light; used in the VRPN 

system to determine the position of the quad 

LIDAR Light Detection and Ranging; this is a system for determining the 

altitude (z) of the quad using the onboard sensor 

Optical Flow System using pattern of motion of objects, surfaces, and edges caused 

by the relative motion between the quad and the scene to determine 

position; used by the quad to calculate position (x, y) when not in the 

lab using the VRPN system 

PID Proportional-integral-derivative control system; standard control 

algorithm used on the quad 

Quad Short for quadcopter; this is the hardware platform we use in this 

project 

Setpoint In a control system, the target value for an essential variable 

VRPN Virtual-Reality Peripheral Network; this is the system used to determine 

the position (x, y, z) and orientation (φ,θ,ψ) of the quad in the lab using 

a set of 12 stationary cameras and an IR transmitter on the quad 
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1 Introductory Material 

1.1 ACKNOWLEDGEMENT 

 

MicroCART is a project that is assisted by graduate students working in controls under Dr. Phillip Jones. As 
this is an ongoing project, previous team members will also be providing help in understanding the current 
system. As such, we would like to acknowledge the assistance that has been and will be provided by: 

● Matthew Cauwels 

● Robert Buckley 

● Matt Rich 

● Dr. Phillip Jones 

● Dane Larson 

● Matthew Kelly 

● Austin Rohlfing 

● Eric Middelton 

1.2 PROBLEM STATEMENT 

We will improve upon an existing platform that is used for research in controls and embedded systems and 

for departmental demos. The platform will be improved by adding increased, reusable testing of all systems, 

adding documentation to increase the speed for new users to get started, and by adding new system 

features including a PCB for consolidating system components and simplifying wiring. 

1.2.1 Problem 

The MicroCART platform designed in previous years had many flaws that hindered its use for research and 

demo purposes. The previous platform failed to familiarize the user(s) of the system in a time horizon that 

would make it viable for research. This is because the system did not have ample documentation available 

for the users of the system to learn about the platform and its uses. From the viewpoint of a user running 

demos the area within the VRPN system the platform as it stood is most stable when confined to flying 

within the VRPN system as the optical flow navigation cannot hold position during flight. This means that 

the areas available to the quadcopter for demos can only utilize the small amount of space in the lab for a 

demo. Lastly, the quadcopter is controlled using a PID controller that requires logical guessing and 

checking to tune, we now have a new linear controller that can be computed faster and be tuned around 

multiple points on the nonlinear model. 

1.2.2 Purpose, Goals, and Approach 

The MicroCART senior design team serves several purposes.  One purpose of the team was to improve on 

the existing quadcopter design in order to give graduate students a more stable platform to use for research 

and testing of control theory.  Another purpose is to showcase the skills that a student in the ECpE 

department can gain throughout their time at Iowa State by creating an impressive demo that the quad can 

perform.  The quad has also been made more reliable so that anybody, even those with little knowledge of 

the project, should be able to read some documentation and feel comfortable performing the demo.  We 

built upon the previous MicroCART team’s platform by improving the stabilization, designing new demos, 

updating the ground station GUI, and building upon the virtual quadcopter software.  
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Our approach to the various aspects of the project started with becoming familiar with the current system. 

This included reading existing documentation, updating it to increase clarity and completeness, and 

running previous demos. Upon gaining enough knowledge, we started building upon the existing platform 

to add demos and functionality that is currently capable. We then built an improved second version of the 

quadcopter.  Lastly, the testing team will be finishing implementation of the virtual quadcopter to support 

full flight simulation using the quad’s software. During this whole period we demoed new features to show 

our client and advisors progress and get feedback regarding functionality of the platform. 

 

1.3 OPERATING ENVIRONMENT 

In order to fly using the VRPN software for position and orientation data, the quad must be inside of a small 

area (less than 10 m2) inside of Coover 3050. This lab is designed to cause very few environmental impacts 

on the quadcopter. Through the use of ventilation, window shades, and Coover’s heating and air 

conditioning, the lab has a nearly constant light and temperature with little to no accumulated dust to 

affect air quality.  

Additionally, the project relies on two Linux computers. One is used to control the ground station software 

and the other contains build tools for the FPGA on the quadcopter itself. This provides a platform for 

development that is consistent across team members and easier to demo as there are not issues with 

building or ensuring correctness of the various communication aspects used for the project. 

 

1.4 INTENDED USERS AND INTENDED USES 

The primary set of end users is composed of future MicroCART members and controls graduate students at 

Iowa State. We also have demonstrations for prospective students, someone from the two categories (the 

user) will be running the demo for them (the audience). This means that the users can be assumed to have 

competence in using multiple forms of programs (for example, either GUI or CLI) and in reading general 

technical documentation.  

The other goal listed above regards the modular implementation of new control algorithms as a research 

opportunity for graduate students. These users have three primary needs from our product. The first is a 

robust and reliable system to decrease variation in test results. This includes having sturdy quad hardware, 

low communication latency, and a bug-free user interface. The second need is to have modular software 

with complete documentation to allow for them to alter the implementation themselves, without the need 

for significant system rework or intervention of the MicroCART design team. Finally, these students will 

need the data from the system characterization in order to form their models. This includes information 

about mass, moments of inertia, motor resistances, rotor areas, and many other properties that determine 

the true behavior of the quadcopter. 

 

1.5 ASSUMPTIONS AND LIMITATIONS 

1.5.1 Assumptions 

● Our VRPN camera system as it exists provides sufficiently accurate position data 

● Our VRPN camera system as it exists provides sufficiently frequent updates 
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● The quadcopter will be used within the camera system 

1.5.2 Limitations 

● The quadcopter must use a wireless link to the ground station 

● Accuracy of onboard sensors (e.g. optical flow, LIDAR, IMU, GPS) 

● Latency and range of the wireless link between the quadcopter and the ground station 

● The quadcopter must be physically tethered to the lab floor 

 

1.6 EXPECTED END PRODUCT AND OTHER DELIVERABLES 

The quadcopter system consists of three major subsections: the quadcopter hardware/software, the ground 

station, and the control systems. Each of the subsections is essential to meet the desired objectives and 

fulfill requirements. Documentation and demos are also a major deliverable for our project and will be 

discussed. 

1.6.1 Quad Hardware and Software 

1.6.1.1 Vivado Upgrade Testing 

The entire quad software platform relies on the Xilinx toolchain. The software we were using to develop the 

Quad software is the Xilinx toolchain. Specifically XPS, which is known to be a very non-user friendly and 

dated piece of software. One of the major goals of this project was to transition to the new and improved 

Vivado to program the FPGA hardware.  In addition, we added unit tests for the hardware modules in 

simulation as part of our continuous integration pipeline. 

1.6.1.2 Second Quad 

Our client advisor requested that we develop a second quad for available flight.  The difficulties in building 

a second quad revolve around the lack of documentation of parts used on the quad, along with the 

availability of the previous generation of parts.  The new quad needed to be able to run the same software 

on a different set of hardware. 
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Figure 1-1 Parts Order for Second Quadcopter 

1.6.1.3 Quad Hardware Upgrade 

The client has requested we upgrade the quads to the latest Zybo board that includes a 

connection for a pi camera. The current quads have many long wires and loose connections that 

are potential points of failure. Our team will create a custom pcb board to replace those 

connections, as well as install the newer Zybo boards. 

1.6.1.4 Quad Software Upgrade 

Currently the quad can only fly reliably within the VRPN Camera system. By integrating the GPS 

and improving controls, a quad that will reliably fly outside will be aimed for. The improved 

communication and multi-client capability developed last year opens up the possibility of 

networking and quad coordination. To take advantage of the newer Zybo boards and cameras the 

client requested, a version of Linux with OpenCV, to be run on the second processor on the 

board, will be explored. Software surrounding these new functionalities will be developed.  

1.6.2 Ground Station 

1.6.2.1 Communication Adjustment 

Communication between the ground station and quad is over Wi-Fi in a configuration that sets up the quad 

as an access point (AP) to connect to from the ground station. This works well when there is only a single 

quad but allowing an arbitrary number of quads simultaneously flying requires a change to make the quad, 

and other trackables using Wi-Fi, clients that connect to a AP setup by the ground station.   
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1.6.2.2 Updated GUI 

The GUI was created to originally run with a single object, being the quad, and with the addition of flying 

multiple objects the GUI must be updated. The starting process will allow users to setup the network 

enabling demos and testing. The navigation window of the GUI will also be updated to allow for switching 

between objects in flight and to allow for demos with multiple quads flying together. 

The GUI is not fully functional in its current state and does not do checking for incorrect data entered by 

the user. The new GUI will add all missing functionality and allow users to switch modes of navigation 

during flight (if conditions are met). The GUI will also perform checks when sending coordinates to make 

sure that the user does not try to have the quadcopter accelerate into the ground or perform other tasks 

that may break a component on the quadcopter. Lastly, the controls graph generated currently is an image, 

we would like this to be capable of interaction, so the user can change PID values from with the GUI. 

1.6.2.3 Multiple Object Tracking Capabilities 

To allow the quad to track an object we first need to get the camera system to recognize a second object as 

trackable. The VRPN system has the capability to track more than one object and will send that information 

to the backend. The backend needs to send this new information to the quadcopter for the quadcopter to 

track the object. Last years team developed the hardware but did not get a chance to fully test it, therefore, 

a range of tests will be developed and implemented. 

1.6.2.4 Manual Assist (Ground Station Side) 

We were given two main modes of operation autonomous or manual mode. A third mode called manual 

assist mode that uses a usb controller to move an x, y, z coordinate setpoint that the quad flies to using the 

quad’s autonomous controls. It will provide a means to getting familiar with quad control in a manner that 

is less likely to hurt the quad as there are added safety features. 

1.6.2.5 Generic Vehicle Integration to Backend Capabilities 

The previous platform was only fit for use with our specific quad that accepts our defined commands. We 

implemented an adapter framework to easily attach new types of vehicles to our system. We also used this 

framework to create an adapter implementation of the Crazyflie vehicle as well as the Cybot platform used 

in the embedded systems class. 

1.6.3 Controls Systems 

1.6.3.1 Model Linearization and LQR Controllers 

The primary deliverables of this year’s team were a modular linearization of the system model and a pair of 

LQR controllers. The linearization is a script that uses symbolic MATLAB derivation of the nonlinear model 

provided by Matt Rich in [1]. This allows a future user to change the nonlinear model and immediately 

recompute the system linearization. Similarly, the linearization is also dynamic on the measured system 

parameters, so no further work needs to be done to account for potential future changes of physical 

properties (e.g. using bigger rotors or a frame with a greater mass). 

1.6.3.2 System Parameterization Instructions 

Because there are now two quadrotors, it is more important than ever to be able to measure and track the 

physical properties of of each quadcopter. As such, the controls team aggregated parameter measurement 

procedures from both Rich’s [1] and McInerney’s [2] research, as well as from un-versioned documentation 

from the previous year’s team. These were formed into a series of four parameter identification instruction 

documents, written in Markdown and stored on git, that contained straightforward instruction, consistent 
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variable usage, and (where necessary) example MATLAB scripts. Additionally, a Markdown document was 

created to track all relevant parameter values and instruction sets. 

1.6.4 Continuous Integration 

1.6.4.1 Quad Simulator 

The quad simulator models a virtual flight dynamics environment for various flight tests. The current 

established model in the simulator does not model rotor dynamics; however, it still offers a reliable 

platform for performing sanity checks of the changes in controls and quad software. The current simulator 

uses a slightly modified version of the actual quadcopter controls. The simulator also offers input and 

output through sockets which enables control to be running outside of the simulator. Our team will focus 

on improving the simulator model and integrating the simulator with the automated environment of 

GitLab. 

1.6.4.2 Upgrade Testing Framework 

Continuous Integration is the system that tests changes to code using the virtual quadcopter software. To 

make the tests more standardized and provide more flexibility in writing the tests, the tests were ported 

from a custom barebones testing framework to a standard testing framework, Unity [3]. This provides a 

fully developed set of testing functions that can be used by future teams.  

1.6.5 Documentation 

The year before, many areas of the code, especially those relating to ground station and quad software, were 

lacking documentation. The ground station contains four main components that are separated well but 

adding functionality was not explained nor is it mentioned that this is custom communication between the 

ground station and quad. The quad software is designed in a way that makes it so external directories must 

be used in build tools and there is also no explanation of the hardware running on the quad. Last year’s 

team made it their goal to have documentation for all existing demos, documentation consistent in all code, 

and documentation for the research done during their time on the team. To follow up on that goal, our 

team will continue adding documentation. This year, the areas of controls model and simulation, 

groundstation, the CI Testing Framework, along with pure hardware plans need improvement and 

organization. 

1.6.6 Demos 

As one purpose of this project is to showcase the talents within this department, new demos needed to be 

developed to showcase yearly changes. These demos are performed to controls classes as well as to 

undergraduate students. We plan to implement the following major demos: 

1. Have a quad that tracks an object on the ground, or in air, and maintains a set distance away from 

it. 

2. Have multiple quads perform synchronous movements 

3. Have multiple types of quads running at the same time flying together. 
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2 Proposed Approach and Statement of Work 

2.1 OBJECTIVE OF THE TASK 

At the conclusion of this year’s iteration of the project, we plan to have a stable, testable FPGA 

hardware platform; a functioning, modular software application capable of maintaining stable 

flight; a ground station capable of coordinating multiple generalized autonomous vehicles and a 

flight simulator that can test the software application in an automated fashion. All of these 

systems will be documented for the next year’s team, with automated tests to verify changes as 

they are made. This will allow the project to meet its goals of being a research platform, and an 

interesting demonstration for prospective students. The interaction between top-level system 

components is given in  

 

Figure 2-1 Top-Level System Diagram 

2.2 FUNCTIONAL REQUIREMENTS 

2.2.1 Quad Hardware and software 

The quad’s system can be split into structures, sensors, actuators, and the Zybo Z7 control board. 

The structures provide the frame that holds the actuators and sensors in place, and connects the 

units together with wires. The Zybo Z7 control board needs to be able to communicate with 

sensors, getting data from each one within the control loop. Additionally, the Zybo Z7 needs to be 

able to control the actuators based on sensor data to affect stable flight. 

The structures need to be rigid in flight, so that the behavior of the quad is predictable. This 

means that the motors should be in fixed positions (but free to rotate the rotors) as well as the 

sensors, so that the sensor data and actuation have a fixed relationship with the quad as a whole. 

The wiring needs to be tightly connected such that in-flight vibrations do not lead to 

disconnection. 

The Zybo Z7 control board contains a Xilinx Zynq FPGA, capable of instantiating any 

sensor/actuator interfaces we need. In order for the board to interface with the sensors and 

actuators, we will need to design, verify, and test new and existing interface modules. The testing 

and verification process should be automatic, so that changes do not go untested. The software on 
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the control board needs to use these interfaces to implement a feedback control system. This 

control system will control the quad’s motion to keep it hovering in a desired location. 

The sensors and actuators should be selected such that they are capable of giving the control 

board enough information and control to maintain stable flight. This means that the sensors need 

to have low enough noise levels to give the control board accurate information about the quad’s 

motion. The actuators need to be sufficiently responsive to allow the control board to react to 

disturbances in the environment. 

2.2.2 Ground Station 

The ground station is the hub through which data flows between separate subsystems. The 

ground station is responsible for routing position and orientation data from the camera system to 

the quad or other vehicle(s) and for exposing flight data to the user(s). The ground station needs 

to route these messages very quickly, particularly from the object tracking system to the quad. 

The object tracking camera system is capable of 100 updates per second, and the quad is capable 

of 200 control loop updates per second, so the bandwidth and latency requirements are 

important. Due to these constraints, adherence to these latency standards is mandatory to ensure 

the quad can stay in the air. 

2.2.3 Flight Simulator 

The purpose of the quad simulator is to create a safe environment to test out code before using it 

on the real quad.  

● The simulation will replace the soft/hardware components from the drivers onward, 

isolating the controls of the quad. These drivers are standardized. 

● The simulator will be integrated into GitLab CI with tests that can be run every time the 

controls software is updated. 

● The parameters that the simulation is based on need to be accurate. Calibration needs to 

be done after every major hardware change. 

● The Ground station communication to the quad will also be simulated or bypassed. This 

communication is standardized. 

● The VRPN cameras will not need to be simulated. Mathematical noise will be added to the 

calculated position of the quad and latency will be added to the simulated wifi signal. 

Same can be done for the Lidar, Optical Flow, and GPS. Their noise ratio needs to be 

sampled. 

● The code for the 2 cores on the zybo board will be kept separate and will be compiled 

separately to test them. The core that is not linux will be simulated in real-time and not-

real-time. The core that is linux is simulated in not-real-time. The linux code will be tested 

by itself, there is no need to simulate Linux itself, just run the code that would run on 

Linux. Simulation is needed to create fake data for the code to use. 

● This simulator will also be integrated with a testbench for the ground station. The 

testbench will be a command line script/program/CI that will run set tests to make sure 

the code is doing what we want. 
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● To be easy to use, view and analyze, a good CLI, GUI, 3D rendering of the quad and 

analysis tools are needed. 

● To be accessible to many users any code not written by the team needs to be open source 

if possible. 

 

2.3 CONSTRAINTS CONSIDERATIONS 

There is not a direct set of standards that is well suited for quadcopter drone software and hardware 

development. IEEE publishes some high-power electronics safety standards, but they are designed for 

systems significantly larger than ours. There are also pure software standards, but our project, as seen 

above, is not purely software. As such, the closest thing we have to a standard to follow is DO-178C, the 

aviation software standard created by the United States government which specifies safety requirements for 

airborne systems and software. This still has its share of shortcomings in relation to our project, however. 

Given the experimental nature of MicroCART and its remarkably low risk of serious injury upon a 

significant software failure (compared to the manned aircraft that the standard was designed for), some of 

the requirements should be considerably loosened. For example, DO-178C gives an acceptable frequency of 

failure for each level of significance, and even the lowest level of risk is given an acceptable frequency of one 

failure per 1000 hours, which is unreasonably (and unnecessarily) strict given the scale of our project and 

the fact that one of its uses is to test potentially flawed controls software. Nonetheless, the standard sets 

forward a useful sequence of steps in which there is a process to work from requirements to code and then 

to fully test both for accuracy and completeness.  

Aside from the DO-178C standard, there are a few other standards that are partially applicable to the 

MicroCART project. One of these standards is the IEEE 802.11 standard  [4], which provides wireless local 

area network (WLAN) communication specifications. Due to MicroCART using WiFi to communicate 

between the ground station and the quadcopter we must adhere to the IEEE 802.11 standard as it relates to 

wireless communication between devices on a WLAN. We are also in compliance with IEEE 1625 (Standard 

for Rechargeable Batteries for Multi-Cell Mobile Computing Devices), ISO 9899 (Standard for Programs 

Written in C), RFC 791 (Department of Defense Internet Protocol), and RFC 793 (Department of Defense 

Transmission Control Protocol), all of which are meant to standardize their respective technologies so that 

the devices that utilize them can be interconnected more easily.  

2.4 PREVIOUS WORK AND LITERATURE 

All of our work is based upon the efforts of those who came before us. MicroCART is an ongoing 

project that has been undergoing iterations since the 1980’s. Previous teams have made great 

strides, especially in the quadcopter software architecture. It has been surprisingly easy to 

understand and follow their design. Their work is lacking in documentation in some areas, 

especially in tool setup instructions. 
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2.5 PROPOSED DESIGN 

 

Figure 2-2 Quadcopter design block diagram 

2.5.1 Quad Hardware and Software 

In order to effectively upgrade our Xilinx Toolchain software to the latest version of Vivado we determined 

it was best to create a new project in Vivado, re-develop the same hardware, and export that to the old 

hardware workspace using the old software and project to reduce the amount of variance that we introduce 

into the system.  

Upgrading to the newer Zybo boards may need some hardware port changes. To increase reliability, more 

robust physical ports will need to be soldered on and the wiring replaced with a custom designed PCB 

board. The current hardware power specifications and wiring need to be mapped out/ documented before 

designing can begin.  

2.5.2 Controls 

The controls for the quad is currently implemented using nested proportional-integral-derivative (PID) 

controllers. There is a set of PIDs for each of the three Cartesian components of position (x, y, z) and one 

for yaw (rotation around the z-axis). These were chosen because they achieve a very configurable approach 

to quadcopter controls, as modifications to the quad can be accounted for by simply adjusting the various 

PID constants. 

The problem with PID controllers is that they contain almost no information about the system physics, and 

once tuned to reasonable values control cannot be reliably improved except through modifying the 

coefficients by hand to meet qualitative judgements. The primary change we wanted was to create a 

controller based on a physical model of quadrotor actuation, which can serve as non-trivial starting point 

for future controls research on this platform. Specifically, the plan was to implement an LQR controller 

capable of flying the quad to prove the correctness of our model and its computed linearization. 
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2.5.3 Ground Station 

The overall architecture of the various components for the ground station will stay consistent but the 

network architecture, as well as backend functionality, will be improved. The ground station is currently 

well designed allowing for a backend server, a frontend for clients to use for communication with the 

backend, and various clients such as the GUI or CLI, more details on each interface can be found later in 

the report. The benefits of the system as it stands is that the communication and server are kept with the 

backend so that clients do not need added complexity to deal with the different objects that are connected. 

The frontend provides a simple interface that clients can pass data to and get a response as needed. This 

again hides the backend implementation from the clients and this interface is simplified and provides all 

functionality that the quad and backend have to offer.   

The network architecture for the MicroCART system consists of the quad setting up an access point for the 

ground station pc to connect to. This allows for only a single object, but with the addition of a second 

quadcopter and usefulness of the MicroCART ground station tools, it is a drawback of the system. The 

ground station will be updated so that it can setup as a AP so that an arbitrary number of other trackables 

such as quads can be communicated with simultaneously. A DHCP server will be needed as well to provide 

objects an IP address for communication. There will be static IPs for any MicroCART quad or other support 

object to allow users the most control when flying and confidence that they will be communicating the with 

intended object. There will also be a range of IPs randomly assigned if a different approach is wanted for 

another application. This change allows for the added functionality to the backend for supporting multiple 

trackables. 

The next major change involves the integration of multiple objects into the backend. This will involve 

separating the backend from the dependence of a single communication scheme. The backend will be 

configurable from a config file that will define what a basic trackable is from the ground station side. 

Meaning that the user could configure as many objects as desired to all be controlled by the ground station 

and get update from the new single threaded VRPN tracker. This tracker will loop through all objects and 

provide them each with position information assume they are using the VRPN system. This will also bring 

about changes in the GUI which will consist of a means of quickly switching between trackable objects 

which it will load from the same config as the backend. 

2.5.4 Continuous Integration 

The original Continuous Integration (CI) system ran a suite of tests that performed checks on parts of the 

quad software, using a set of sockets to simulate the drivers used on the quad. It relied on a basic testing 

framework, created by a previous team member, consisting of a single assert function. To address these 

limitations, we plan to add an additional part to the testing procedure to test the controls themselves. This 

would involve interfacing with a flight simulator and connecting the controls used on the quadcopter to the 

simulator, with the output of the simulator connected as inputs to the control model and the outputs of the 

control model connected to the inputs of the simulator to provide throttle levels to the motors of the quad 

in simulation. Automated tests that integrate with this simulator will also be made to test the ground 

station. In addition, we plan to replace the testing framework currently in use with a more powerful C 

testing library, Unity [3]. To do this we will work to convert the existing tests to use Unity.  

2.6 TECHNOLOGY CONSIDERATIONS 

This project makes use of several technologies, including a 12 camera object tracking system, a 9 

degree-of-freedom Inertial Measurement Unit, a LiDAR unit, an optical flow sensor, and an FPGA. 
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These subsystems give the system greater awareness of its position and motion, and increase its’ 

flexibility with regards to adding new sensors/technologies to the system. 

The object tracking system is capable of providing accurate, high frequency updates about the 

quad’s position. This can then be used by the control algorithm to provide actuation to maintain 

stable flight. The use of the camera system restricts the quadcopter’s operating area significantly. 

It is possible to use the Inertial Measurement Unit to achieve near-stable flight without the 

camera system, this can be further improved with the use of a LiDAR sensor to maintain a fixed 

height off of the ground, though that approach is more susceptible to environmental disturbances 

such as an uneven floor. The addition of an optical flow sensor provides additional data about the 

quadcopter’s horizontal motion, but is again more susceptible to environmental disturbances, and 

requires a visible pattern on the floor. 

We also make use of several technologies that are not part of the system at runtime for 

development and testing. All code and technical project files are stored on a departmental GitLab 

server, making them available to all members and any advisors. This platform also provides tools 

for automated testing whenever changes are made to the contents. We use the Xilinx FPGA 

development toolchain (Vivado and XSDK) to build the hardware platform for the control board, 

and to develop the application software on the quad. These tools are well maintained, but not 

without annoyances, they often take actions that make the project less able to be worked on from 

different machines, reducing the options for development. 

The current controls model is created in Simulink in MATLAB, a proprietary software, making 

this model not easily accessible to many users but very powerful. Any CI testing utilizing this 

model will also be unavailable to the user. Xcos in Scilab is a good open source alternative that is 

suitable for controls applications. There would be a learning curve and it would take time to 

replicate the model as far as it currently is.  

Simulink has its own 3D rendering capabilities, but a recent release has a specific module set up 

for easy integration with FlightGear (which is free), which has an easier UI, but because it is fairly 

recent the model may have issues if it is opened in older versions of MATLAB. 

The virtual quad currently works on Unix systems. It may or may not be worthwhile to create a 

version to run on Windows systems. 

The Groundstation is written in QT and compiles for a specific system. It may be worth 

developing a lighter version that can run on android systems that will make the ground station 

portable when the quad will eventually be used outside. 

2.7 SAFETY CONSIDERATIONS 

This project does carry physical safety concerns. The quadcopter has blades that spin very quickly 

and are capable of causing bodily harm. We mitigate the risk by using a tether, limiting the 

operational area of the rover to a hemisphere that can be avoided by people while the quad is in 

operation. There are application-level kill-switches that can be used to terminate quad function as 

long as the software is working correctly. The worst case of failure is the quad setting all motors to 
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full output and then getting stuck in software. In this case, the quad will fly around the tethered 

area rapidly, until it runs out of battery. As long as no-one attempts to catch the quad, all 

personnel should remain safe even under this condition. 

2.8 TASK APPROACH 

2.8.1 Hardware Development 

The development of hardware in Vivado is a process that involves a (relatively) long process to 

verify changes on the physical system. As such it is advantageous to test submodules in 

simulation or to work with single-purpose designs to verify a block until there is reasonable 

certainty that the system will function. This implies a heavier dependency on reading 

documentation as compared with the software project. We will make efforts to keep the hardware 

design modular, so that individual components can be tested in isolation, where build times are 

faster. 

2.9 POSSIBLE RISKS AND RISK MANAGEMENT 

Many team members are working on tasks which they have no previous experience with. To 

mitigate the risk of falling behind schedule or being unable to complete these tasks due to lack of 

knowledge, our team has been working with members from previous teams to set up knowledge-

sharing meetings and ease the learning curve as we take ownership of the project. 

Ordering hardware components for the quad presents another possible source of delay to our 

schedule. According to a previous year’s group, this process can be very slow. The best method for 

avoiding delay, in this case, is to order parts well before they are needed so that there is time for a 

re-order if necessary. However, introducing a reimbursement-style system that allows students to 

order parts would be preferred and greatly increase efficiency. 

Due to FAA regulations, and with winter covering a significant portion of possible testing time, it 

will be difficult to test the quad outside. Consulting with our advisor about appropriate testing 

locations and rigorously careful scheduling will be needed. 

2.10 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA 

Our team will implement CI testing through Gitlab, so that every new software addition will have a test 

written for it and can be run against all the previous tests to check it doesn’t break the system. 

First Milestones  

● Familiarizing ourselves with the available documentation 

● Improving documentation and testing for the project. 

Second Milestones  

● Updating hardware to the newer Vivado 

● Mapping the physical quad circuit system 

● Robust Zybo ports soldered 

● Updating quad parameters for simulation 

● Successful communication between virtual quad and Simulink simulator for CI testing 
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Third Milestones 

● Designing of PCB 

● Zybo board switched out 

● Designing controls that accept matrices 

● Updated Simulink simulator to include other sensors 

● Successful communication between virtual quad, Simulink simulator and FlightGear for CI testing 

● Linux integration 

Fourth Milestones 

● PCB designed, built and integrated 

● Successful communication between virtual quad, Simulink simulator, FlightGear, and Ground 

station for CI testing 

● OpenCV support 

2.11 PROJECT TRACKING PROCEDURES 

Our team will meet weekly to discuss progress with our client and as a team. Each week we will set goals 

and then report on the progress of those goals. We will be using issues in GitLab to track work items and 

bugs. Any time a demo fails, we will attempt to determine a cause and create an issue with any available 

information. As we work further to resolve the problem, the issue thread provides a dedicated space for 

discussion that is permanently recorded for documentation purposes. 

2.12 EXPECTED RESULTS AND VALIDATION 

The list of deliverables are as follows: 

● Continuation of the Documentation Policy – Each new feature or component should have 

information about what it is, what it does, and how to use it. 

● Vivado Upgrade Testing – The upgraded hardware platform on the new Zybo Z7 board should have 

equivalent functionality to the old platform on the old board. 

● A Fully Functional Second Quad - construct a second quad capable of all of the functionality of the 

original 

● Upgraded Zybo boards on both quads 

● Custom PCB boards on quads – The power system should provide the Zybo with steady power, all 

sensors should have reliable mechanical and electrical connections. 

● Real time Ground Station data logging - be able to transmit flight data from the quad to the ground 

station without requiring a buffer period after the flight has completed. 

● Multiple Object Tracking Capabilities - be able to track multiple quads from the ground station as 

well as detect and prevent possible collisions 

● Multi Quad Synchronization - be able to synchronize movement patterns between multiple quads 

operating at the same time 

● Linux Integration and OpenCV functionality 

● Model Linearization and LQR Controllers – The LQR controller should have greater performance 

than the PID controller in terms of overshoot, settling time and steady-state error. 

● System Parameterization Additions 

● Quad Simulator - create a simulation framework capable of simulating more realistic environments 

and flight parameters 

● Upgraded Testing Framework – be able to run tests in the simulator environment using production 

code 
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● New Demos - program new demos that not only showcase new functionality but also serve as 

appealing demonstrations for the department to show off 

2.13 TEST PLAN 

2.14 INTERFACE SPECIFICATIONS 

The major interfaces for the MicroCART project involve the ground station and the multiple areas including 

the Backend, Frontend, CLI, and GUI. Figure 2-3 shows the communication between the various areas and 

the sockets outside of the ground station computer. 

 

Figure 2-3 Ground Station flow diagram 

2.14.1 Ground Station Interface Specifications 

The ground station interface consists of two major components including the Backend and Frontend. The 
Backend provides a server that the VRPN system and user interfaces connect to via sockets for 
communication. This allows the obtaining of position information from the VRPN system as well as 
accepting commands from the frontend. Additionally, the backend connects to the quadcopter also via a 
socket. The frontend provides methods that handle the interfacing with the Backend for both the CLI and 
GUI. 

2.14.2 Ground Station GUI Specifications 

The Graphical User Interface will have four tabs that allow for starting of the backend, viewing the control 
graph, navigation, and real-time graphing. The backend tab both starts the backend and will also allow for 
the use of the Command Line Interface directly within the GUI. The controls tab allows the user to change 
the constant values within the controls to tune the PID values during flight. Navigation allows sending of 
coordinates to the quadcopter and the running of demos. Lastly, the real-time graphing tab will allow a 
configurable real-time data transmission between the quadcopter and GUI to graph during flight. 

2.14.3 Ground Station CLI Specifications 

The Command Line Interface provides direct access to the commands that the GUI sends for the user. It 
does not provide many of the extra features that the GUI provides such as automating setpoint sending, 
real-time transmission, and viewing the control graph. This is a more lightweight interface that still 
provides the use of all the same commands sent from the GUI. The CLI also allows for the creating of scripts 
that can run instead of a C based program. 

2.14.4 Ground Station Access Point Specifications 

To support multiple quadcopters, we setup up a wireless access point on the ground station. This required 

server software such as hostapd, dhcpd, and a reprogramming of the Wi-Fi chip on the current quad. Once 
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this was implemented we were able to host multiple vehicles, simultaneously,  from a single ground station 

[4].  

2.15 HARDWARE AND SOFTWARE TESTING 

2.15.1 Automated Unit and Functional Testing 

All commits to the Git repository are tested through a suite of continuous integration scripts. These scripts 

perform unit tests on the software that runs on the quad and higher level functional tests that run on the 

“virtual quad” which interfaces with a set of Unix drivers. The scripts are run automatically using the GitLab 

pipeline integration. We will continue to improve the test coverage over the existing code, and as more 

features are added, tests will be added to cover them. The automated testing flow is shown below in Figure 

2-4. 

 
Figure 2-4 Diagram of automated testing 

2.15.2 Flight Simulation 

The correctness and requirements of the quadcopter software will be tested through the quad simulator 

and the help of the simulator event test scripts. Different flight regimes will be tested and verified whether 

the quadcopter position and orientation are within a threshold. In case of an accident, ground contacts are 

detected, and the unsuccessful test is terminated early. An example of the simulation output is provided in 

Figure 3-3. 
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Figure 2-5 Quadcopter altitude PID testing results obtained from the quad simulator 

2.15.3 Flight Test 

The implementation of the ground station allows for a list of setpoints to be loaded into the GUI to allow 

for autonomous navigation.  The quad will automatically relocate to the next point in the list once it gets 

within a defined range of the setpoint.  We use these set points to test edge cases and to have a flight 

pattern that will test the more extreme patterns of movement. Another method of testing is to use the CLI 

to directly call commands that we are testing. In Figure 2-6 the CLI is shown in the top left, Backend in the 

bottom left and the flight is on the right. 
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Figure 2-6 Flight Test with CLI 1 

2.15.4 Controls Testing 

Testing of the new LQR controller was done entirely through the Simulink flight simulation provided to us 

by last year’s MicrCART team. For the initial design, the simulated parameters were set to the same values 

that Matt Rich measured on his quad in [1] so that we could directly compare results. Once stable flight had 

been achieved with that virtual quadcopter, we returned the virtual parameters back to match our own to 

design a controller for the modern quadcopter. 

A MATLAB constrained minimization function was used to find controller weights, so we required a 

function that could run the simulation and determine the error of each state from its setpoint at each time 

sample. Two such examples of this data (plotted as error vs. time sample) are shown below in Figure 2-7 

and Figure 2-8. These are two of the earlier controllers. Note that the controller in Figure 2-7 – besides 

having an additional yaw setpoint – is much less stable than the controller depicted in Figure 2-8. Despite 

the different plot formats, both of these have a total simulation time of 40 seconds, so the time the y-

setpoint error takes to settle in the first (approx. 20s) is more than double the time taken in the second 

(approx. 8s). 

 

                                                      
1 Details of flight test are unimportant; used to demonstrate screen layout 
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Figure 2-7 Setpoint errors for the PID controller 

 

Figure 2-8 Setpoint errors for the LQR controller with same axes and legend as Figure 2-7 
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2.15.5 Latency Testing 

The quad uses Wi-Fi for its communication which it is relying upon for position updates it is very important 

that the latency in communication is as low as possible. In [4] the Wi-Fi is tested to bound the average 

latency of a packet within our system. As we changed the network configuration as well as the code 

controlling the ESP8266 ESP-01 chip latency was tested to ensure that this change and addition of a second 

quad does not negatively impact the performance of both quads during demos. 

  



 

SDMAY19-20      21 

 

3 Project Timeline, Estimated Resources, and Challenges 

3.1 PROJECT TIMELINE 

This project is an ongoing project with a lot of existing progress, we plan to spend most of our 

efforts the first semester familiarizing ourselves with the existing work. As we learn how the 

system and development tools are setup, we will integrate new features, tests, and improvements 

into the system moving through the first semester. In the second semester, we will continue to 

work on the project’s technical aspects, while switching the documentation focus from reading 

documentation to writing it for the next team. 

Table 3-1 Project Timeline 

 
Figure 3-1 Project Timeline 

Each milestone in Figure 3-1 is the primary responsibility of specific team members, selected 

based on each team member’s interests and skills. After spending some time understanding the 

existing setup, we set goals and deadlines based on what we felt we could accomplish. Some tasks 

have been omitted as research is needed to determine what the sub-tasks will be (e.g. running 

Linux on the second core) and any time estimates we could produce would not currently be 

practical or accurate. To account for the dead time, we have a list of ‘optional’ or desired features 

that will be implemented in the second semester as time and resources allow. 

3.2 FEASIBILITY ASSESSMENT 

From our experience as a team, we fully expect to achieve our goals regarding the unit testing of 

the system components and the flight simulator. We are unsure of the multi-quad and multi-

device support for the ground station. Previous teams have tried and failed to control multiple 

devices simultaneously in this project. We plan to learn from their experiences, but we are unsure 

what caused their problems at this time.  
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3.3 PERSONNEL EFFORT REQUIREMENTS 

We expect about 7 hours per week from each team member on the technical aspects of the 

project. See the following table for the expected time/task. 

Task Hours 

1 Quad Hardware 110 

1.1 Vivado Migration 40 

1.1.1 Single-unit tests 30 

1.1.2 Full hardware desgin 10 

1.2 Automate tests 20 

1.3 Implement automatic sensor interfaces 20 

1.4 Implement controller in hardware 30 

2 Quad Software Controls 125 

2.1 Ensure Isolation of Drivers 20 

2.2 Migrate app. to new hardware 15 

2.3 Verify LQR control model 30 

2.3 Implement LQR controller 20 

2.5 Write Tests for the simulator 40 

3 Ground Station 70 

3.1 Learn GUI Framework 30 

3.2 Improve feedback to user 40 

4 Flight Simulator 100 

4.1 Create physics simulation of quad 20 

4.2 Makefile for simulation of quad app. 20 

4.3 Integrate quad app. Into simulation 30 

4.4 Simulate ground station commands 30 

Figure 3-2 Task Time Estimates 
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3.4 OTHER RESOURCE REQUIREMENTS 

The MicroCART project operates out of the Distributed Autonomous Network and Control Lab in 

Coover Hall, which is equipped with standard bench electronics equipment as well as quadcopter-

specific items. In addition, the lab is often used by graduate students who have expressed a 

willingness to help us as advisors for the controls problems we will inevitably encounter. 

3.5 FINANCIAL REQUIREMENTS 

The client will be funding the project as needed, and many parts are carried over from previous 

iterations. The costs breakdown of the current setup is given below. 

Item Cost 

Zybo Z7020 $300 

Sparkfun MPU9250 IMU $15 

LidarLite v3 from PulsedLight3D $130 

Optical Flow Sensor (PX4Flow) $60 

Quad Airframe (FlameWheel F450) $200 

RC Receiver (AR610) $40 

RC Transmitter (DS6i) $100 

Custom PCB and parts $200 

Total $1045 

Table 3-2 Project Cost Estimates 

The operating environment includes a ~$12000 object tracking system that is shared with other 

projects as well as several workstations. We would prefer to remove this dependence, but it is 

necessary to collect reference data for characterization of the quad, even if the quadcopter did not 

require live camera data to fly. 
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4 Closure Materials 

4.1 CONCLUSION 

Our MicroCART team has been steadily working to produce a more stable flying quadcopter that can be 

easily demoed to other students and faculty. The previous team’s documentation policy has provided us 

with a good fundamental understanding of the platform along with a solid foundation for future teams 

understanding. The quad software and hardware team will work this semester to update the toolflow of the 

project from XPS to Vivado along with the hardware on the quads and their functionality. The ground 

station team will improve the backend of the system to allow for real time tracking and simultaneous 

multiple vehicle flight. The controls team will continue to develop instructions describing how to 

parameterize the system as well as a new LQR controller. The continuous integration team will help add 

new tests for each hardware and software module, as well as integrating the quad simulator. The sub-teams 

combined, will work towards meeting our end goals and deliverables for this semester to provide a platform 

that can be demoed to potential students, worked on by future teams, and used in research by graduate 

students. 
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4.2 APPENDICES 

A. Operating Manual 

Below is an in depth explanation of the sets required to properly setup and demo the quad. There are six 

primary steps required for a demo, as listed below. 

● Setup the quad(s) 

● Setup camera system 

● Configure the backend 

● Start ground station software 

● Final Checks 

● Connect the motors and start flight. 

A.1 Setup the Quad(s) 

During a demo the quad should be configured to boot from an SD card and the proper BOOT.bin file is 

required for the quad that you are using. Navigate to the MicroCART GitLab which is part of the DANC 

group, the link is listed below as well as at the top of this document. 

https://git.ece.iastate.edu/danc/MicroCART 

From the GitLab go the Tags section, grab the corresponding BOOT.bin file and place it onto an SD card. 

Next, ensure that the Zybo board is setup to boot from an SD card, see Figure 4-1 for the placement of the 

corresponding jumper, and insert the SD card, this slot as shown in Figure 4-1 is below the board in the 

image. 

 

Figure 4-1 Zybo board 

With the Zybo setup grab a battery and voltage monitor, both can be found within the lab near the 

MicroCART computers, and connect the voltage monitor, the correct connect is the one in Figure 4-2. 
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Figure 4-2 Voltage Monitor Connection 

Place the battery on the quad and align it so that the back of the battery is aligned with the hole in the base 

plate of the quad, see Figure 4-3. This is approximately in the center of the quad which is the best for the 

controls that the quad run. 

 

Figure 4-3 Battery placement in the quad 

At this point the battery can be connected and the Zybo board can be powered on. The “PGOOD” LED 

should turn red when powered on and the “Done” LED should turn on after the program has completely 

loaded. These LEDs are directly below the jumper used to configure the Zybo to boot from an SD card, the 

“PGOOD” on the left and “DONE” on the right, see Figure 4-1 for location of jumper. At this point grab the 

controller for the quad that is being demoed, the correct controller for each quad is to the right of the 

quads in Figure 4-4, and turn it on. The receiver on the quad should light up when connected as seen in 

Figure 4-5.  
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Figure 4-4 Quads with controllers (new quad is bottom quad, it has thinner top plate and black ESCs) 

 

Figure 4-5 RC Receiver when controller is connected 

Lastly, ensure that the quad is tethered down as seen in Figure 4-6. 
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Figure 4-6 Quad tethered 

A.1.1 Setup Camera System 

If flying inside the lab this step needs to be completed. In the corner of the lab opposite the cabinet sign on 

the computer with the username and password list below. 

Username: camera 

Password: Camera 

Open the OptiTracking tools software and open and existing project. The project that is most recent should 

be opened “TrackingToolsProject 2018-XX-XX-XX X.XXpm”, where the X’s are a time and date. Next, open 

up the corresponding trackable file labeled “MicrocartX.tra”, where X is the quad number that you are 

using.  

At this point the camera system is setup and the real time information will be displayed on the screen. 

A.1.2 Configure the Backend 

Steps to navigate to the ground station directory are below and needed for all following steps. 

cd senior 

cd groundStation 

If only flying a single quad this step should already be complete. From the base ground station directory on 

the ground station computer navigate to the backend folder. 

cd src/backend 

Inside the config.h file ensure that the variable “NUM_QUADS” is set to the desired value. In the config.c 

check that the “trackables” array is setup and in the correct order for the demo. 
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A.1.3 Start ground station software 

Back in the groundStation directory make the VRPN and the backend. 

make vrpn 

make 

Either start the services for the network, or do so in the GUI, steps to start the network are as follows: 

cd wifiap 

./startAP 

After the last make the ground station GUI should be available. For more advanced users that would like a 

command line option the backend can be started and the CLI used. 

Directions to start the GroundStation GUI from ground station directory: 

./GroundStation 

Directions to start the backend separately and use the CLI from ground station directory, CLI commands 

are outlined on the GitLab and will not be shown below: 

./BackEnd 

The following steps pertain to GUI  users only. On start the GUI will show the backend tab, start the 

backend with the “Start” button (make sure that the network is setup at this point). Go to the next tab 

labeled “Controller Graph” and click the “Refresh Controller Graph” button. Next, go to the Navigate tab 

and complete the rest of the steps. 

A.1.4 Final Checks 

At this stage check that all previous steps are complete. On the GUI the current position should be shown 

and changing over time if you move the quad around. Load and waypoint files if desired with the “Load” 

button, all files can be found in the corresponding folder in the Documents directory of the ground station 

computer. 

Check that the controller is setup in the “Killed” and “Manual” configuration. The switches should be 

labeled on both controllers with this message as well. Please note that when the quad is killed it will not 

respond to any commands from the controller or ground station. When in autonomous mode, which is also 

labeled on the controller, if at any point a demo goes wrong flip into “Manual” mode and attempt to correct 

or alleviate damage. 

Again make sure that quad is tethered before continuing. 

A.1.5 Connect the motors and start flight 

Connect the deans connects on the quad, which are the red connectors shown in Figure 4-7. 
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Figure 4-7 Deans connectors 

Turn the quad on and enjoy your flight!  

Other Notes: 

When in manual mode the controller is providing the input to the quad. Always attempt manual mode 

before trying autonomous to check for any weird behavior. When in autonomous there are scripts for 

takeoff and touchdown accessible from the GUI.
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